

The formal theory driving HATA specifications - Parallel Processes
Intro
HATA can be used to specify sequential beha-
viour, but its full potential lies in specifying
parallel behaviour including communication
between separate processes.
Sequential processes are specified using two
basic operators: the sequential composition
specifying a certain order of events, e.g. a ; b
and the alternative composition specifying a
choice between alternatives, e.g. a | b.

Parallel Composition
The parallel composition expresses the fact
that two possible continuation paths have to
be executed in parallel. One can express that
the process term x and the process term y are
happening at the same time as follows: x & y.
A vending machine with two separate coin
slots and two independent entities that can
serve tea and coffee simultaneously can be
defined as follows:

The corresponding transition system allows
for the individual actions of both process
terms to be merged in every possible way as
long as the order of these actions as defined
by the sequential operator is respected.

Communication
Parallel processes do not operate in a vacuum,
but need to be able to exchange information.
In HATA communication is implemented
through multiple actions with the same signa-
ture happening at the same time.
Information can be exchanged during commu-
nication through the data parameters of an
action. A variable can be used as a data para-
meter and as a result of the communication
this variable will be instantiated with a specific
value, if the communication partner offers a
value for the given parameter.

The following example shows two parallel pro-
cesses that communicate through the action
payment.

The intended transition system is as follows:

However, because of the rules of the parallel
composition, the payment action can occur in
each process separately without the need to
wait for a corresponding action to occur in the
other process.

To ensure that certain actions can only occur as
part of a communication the comm modifier
keyword is used. To achieve the intended be-
haviour, action payment has to declared to be a

Process Algebra vs. Programming Languages
Process algebras traditionally use a different notation for the process
operators than the one used in HATA.
The parallel composition is traditionally written as: “||”.
In HATA the alternative operator is written as „|“, a disjunction.
Therefore, the logical consequence is to use „&“, a conjunction,
for the parallel operator.
The use of “&” meaning “and” is also common in boolean expressions.

Conclusions
The parallel operator „&“ has been introduced above as the basic way
to express concurrency in HATA. The communication and exchange of
information between processes through the use of actions with an
equal signature has been shown. Finally, a somewhat larger example of
a simple vending machine in interaction with two separate customers,
illustrates the use of the parallel composition and the use of communi-
cation to exchange information between different processes.

Hochschule Emden/Leer
Constantiaplatz 4

26723 Emden

Prof. Dr. Gerrit Jan Veltink
gert.veltink@hs-emden-leer.de

Process Algebra in HATA • 2

so-called communication action in the defini-
tion of process CoinSystem:

Example: A vending machine
Below is an example of a specification of a
vending machine that sells coffee for 25 cents
and tea for 10 cents. To show an example of
communication in HATA, two customers will
interact with the machine.

This example assumes the existence of a data
type Drink containing at least coffee and tea as
representatives and a data type Coin contai-
ning at least coin10c and coin25c.
Moreover, the existence of a mapping from
Drink to Coin called cost is assumed.

public process VendingMachineWithCustomers {

 // --- Behaviour definitions of processes

 comm action button(Drink d);
 comm action drink(Drink d);
 comm action payment(Coin c);

 // "main" process and entry point

 public VendingMachineWithCustomers() {
 VendingMachine()
 & CoffeeCustomer()
 & TeaCustomer();
 }

 // auxiliary processes

 VendingMachine() {
 button(Drink d);
 payment(cost(d));
 drink(d);
 VendingMachine()
 }

 CoffeeCustomer() {
 button(coffee);
 payment(coin25c);
 drink(coffee)
 }

 TeaCustomer() {
 button(tea);
 payment(coin10c);
 drink(tea)
 }

CoinBox=
payment(Coin c); CoinBox

Customer=
payment(coin10c);
payment(coin25)

CoinSystem =
Customer & CoinBox

comm action payment(Coin)

insert(coin10c); tea()
& insert(coin25c); coffee()

payment(coin10c)

payment(coin25c)

coffee()

insert(coin25c)insert(coin10c)

tea()

tea()

tea()

insert(coin10c)

insert(coin10c)

insert(coin25c)

coffee()insert(coin25c)

coffee()

