
The formal theory driving HATA specifications - Sequential Processes

Goals
HATA offers an extension to the programming
language Java that allows for describing the
behaviour of concurrent processes by means
of an implementation of a process algebra.
This process algebra is mostly based on ACP,
but also uses aspects from mCRL2 and TCPτ.
However, the HATA notation differs from the
original formal process theories in order to
appeal to the intuition of programmers fami-
liar with current day program languages.
The theoretical context is shown in the fol-
lowing image.

Actions
The basic unit of execution is an action, an in-
divisible event. In HATA an action is modelled
by a call to a Java method. An action can be
parametrized by data. In HATA the data types
can be any Java reference type. The combina-
tion of the name of the action and the types of
its parameters is called its signature.
An example of a parameterized action is inser-
ting a coin into a vending machine:

Process Operators
Actions can be combined into larger process
terms by applying process operators. The two
essential operators are introduced below.

Sequential Composition
This is the most common operator. It is used to
define an order between actions. We can ex-
press that an action b can only happen after
action a has finished as follows: a ; b. Here the
semicolon is used as an operator on the two
operands: a and b.
A vending machine that serves coffee for 25
cents could be modelled as:

The resulting transition system is given below:

Alternative Composition
The next operator implements a choice bet-
ween two possible continuation paths. We can
express that either the process term x or the
process term y can happen (but not both!) as
follows: x | y.
Now we can extend the example of the vending
machine with the possibility to serve tea for 10
cents:

The resulting transition system shows the two
possible execution paths:

Conclusion
The formal theory used in HATA to specify sequential process behaviour
has been introduced above. We have shown how basic atomic actions
are related to method calls in Java. We have shown how actions can be
transformed into process terms by using the sequential and alternative
compositions, and how processes are defined by attaching naming
identifiers to process terms. Finally we have shown how loops are mo-
delled through recursion on processes.

Process Algebra vs. Programming Languages
Process algebras traditionally use a different notation for the process
operators than the one used in HATA. The sequential composition and
action-prefix are traditionally written as: “.” or “·”, the alternative com-
position as “+”. As HATA explicitly aims at appealing to the intuition of
programmers, a different notation has been chosen. The semicolon is
used for separating program statements and implicitly defining an
order. The use of “|” meaning “or” is common in boolean expressions.

Hochschule Emden/Leer
Constantiaplatz 4

26723 Emden

Prof. Dr. Gerrit Jan Veltink
gert.veltink@hs-emden-leer.de

Process Algebra in HATA • 1

Non-deterministic choice
By chaining a number of alternative composi-
tions, we can essentially specify a number of
next possible options for the current state.
If there is more than one possible continuati-
on, one of the possible next steps is chosen
non-deterministically.

Processes
Sofar, we have only defined process terms.
Processes are defined by relating a process
(variable) to a process term. Process identi-
fiers typically start with an uppercase charac-
ter.
We can define a Simple Vending Machine (SVM)
using the process term from the previous ex-
ample.

Recursion
There is no explicit operator for repeating be-
haviour (cf. loops). Recursion is used instead.
The vending machine from the previous ex-
ample has a serious drawback, it can only
serve one cup of either tea or coffee. A more
realistic model would allow for serving multi-
ple drinks. This is achieved by incorporating a
process variable into a process term.

After serving a drink the machine returns to
its initial state. The resulting transition
system is shown below:

The final figure shows, that the process name
(SVM) can be used as a reference to the initial
state of the transition diagram.insertCoin(25c)

insertCoin(25c); coffee()
CSP

Hoare (1978) CCS
Milner (1980) ACP

Bergstra, Klop (1984)

PSF
Mauw, Veltink (1990)

mCRL2
Groote e.a. (2007)

µCRL
Groote, Ponse (1995)

TCPτ-Tool
Breer, Veltink (2014)

TCPτ
Baeten, Basten, Reniers (2010)

Process Algebras & Tools

HATA
Veltink (2015)

insertCoin(25c); coffee()
| insertCoin(10c); tea()

SVM = insertCoin(25c); coffee()
| insertCoin(10c); tea()

insertCoin(25c)

coffee()

insertCoin(25c)

coffee()

insertCoin(10c)

tea()

SVM = (insertCoin(25c); coffee()
| insertCoin(10c); tea()) ; SVM

insertCoin(25c)

coffee()

insertCoin(10c)

tea()

SVM

